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SUMMARY

A method is presented for deriving time-response and frequency-
response data for angle of attack and normal acceleration at the center
of gravity of an aircraft when these data are measured at locations on
the aircraft other than the center of gravity and when the piltching
velocity is not measured. The method involves the calculation of transfer
functions for the measured gquantities and operation on these transfer
functions to derive the transfer function of the desired quantities at
the center of gravity. Time-response data at the center of gravity are
then obtained by applying e control input to the corrected transfer func-
tion. Basic aerodynamic relationships and the forms usually assumed for
the transfer functions are used in the derivation. A numerical example
is included to illustrate the application of the method.

The method appears to have particular application to missiles and
models of aircraft where the number of telemetering channels available
may limit the number of quantities that can be recorded or where, because
of space limitations, instruments cannot be placed in the most desirable
locations.

INTRODUCTION

In the determination of the dynamic stability of aircraft, it is
often desirable to flight test the aircraft or scale models of the air-
craft in order to determine transfer functions or frequency responses.

In the study of longitudinal stability, for example, the transfer func-
tions relating angle of attack, pitching velocity, and normal acceleration
to the control deflection may be desired. Frequently, however, facilities
for recording the data necessary for a general stability analysis are
limited. Guided missiles and rocket-propelled scale models that require
telemetering facilities often present such a problem. Furthermore,
distribution of such items as fuel and propulsion units in either models
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or full-scale aircraft may preclude the possibility of locating recording
instruments in the most desirable positions. For these reasons, test con-
ditions under which a limited number of pertinent quantities are meeasured
on the aircraft at positions other than those suitable for stability
studies are frequently experienced.

When aircraft motion is confined to two degrees of freedom, any two
measurements (such as two accelerometers; one in the nose and one in the
tail) will suffice. It is customary, however, to define the short-period
longitudinal motion of an aircraft with angle of attack and normal accelera-
tion measured at the center of gravity. When any two independent quantities
are measured, time histories of the quantities desired for defining the
motion may theoretically be calculated from the measured transient response
data. The procedure, in general, requires differentiating or integrating
one or more of the recorded quantities and applying corrections point by
point to the measured curves. This process is laborious, however, and may
introduce inaccuracies not present in the original data. As an alternative,
an approach which eppears shorter and more accurate would be to calculate
transfer functions for the measured quantities and to operate on these
transfer functions to derive the transfer functions and transient time
responses for the desired quantities. This approach is used in the method
described in the present paper.

The derivation of the relationships between angle of attack and
normal acceleration at the center of gravity and these quantities measured
ahead of (or rearward of) the center of gravity is presented for the case
in which pitching velocity is not known. (The method is greatly simpli-
fied when pitching velocity is known and consideration of this condition
is ineluded.) Pitching velocity is calculated from angle-of-attack and
normal-acceleration transfer functions related to the center of gravity.

An applicetion of this method is illustrated by use of data obtained
from drop tests of a freely falling body.

SYMBQOLS
c mean aserodynamic chord
Cy, 1ift coefficient
oC,
Cr variation of 1ift coefficient with angle of attack, %
CLDu variation of 1ift coefficient with rate of change of angle of
attack, , Bec
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Clpg
C1g

Ca
Cn,

Cmpg

aC
varietion of 1lift coefficient with pitching velocity, 35%, sec

oC
variation of 1ift coefficlent with elevator deflection, S—L
o}

pitehing-moment coefficient

variation of pitching-moment coefficient with angle of attack,
oCm
o

variation of pitching-moment coefficient with rate of change of
angle of attack, égﬂ, sec
oDa

variation of pitching-moment coefficient with pitching velocity,

oC
—Z  sec

oDe

variation of piltching moment with elevator deflection, SEE
8]

differential operator, é%

acceleration due to gravity, ft/sec®

nondimensional radius of gyration of alrcraft about axis of
pitch

distance between center of gravity and angle-of-attack vane
(positive forward), £t

distance between center of gravity and normal accelerocmeter
(positive forward), ft

numerical integer

numerical integer or normal accéleration, g units
time, sec

true airspeed, ft/sec

angle of attack, radians




w

L]

Subscripts:

cg

P

v

flight-path angle, radians

elevator deflection, radians

angle of pitch, radians

relative-density factor,

phase angle, deg

Mass
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Air density X Wing area X €

angular frequency, radians/sec

performance operator notation

center of gravity

location of normel-acceleration pickup

location of angle-of-attack vane

Transfer~function coefficlents:

K VE-KY2<?u~% + CLDa)

KYacLa
v CLDG) * CreCmpg
%+ Clm) = C15Cmp,
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2 o
M = 2p & Ky*C
" gv Y g

N=2X Cr. +¢C )-.‘1016' + Cppy

z ‘ms\®Ipy, * CIpg) ~ g Coupey 8
P =Xfcy C - Cp C

g\ "o B Iy
]
F coefficlents of transfer functions obtalned at locations other

than the center of gravity and corresponding, respectively,

X L to coefficients G, H, M, N, and P of transfer functions
Y at the center of gravity.
Z

ANAT.YSIS

Consider an alrcraft having an angle-of-attack vane located a dis-
tance 17 ahead of the center of gravity and a normal-acceleration

sensing device located a disteance 1, ahead of the center of gravity.

The pitching veloclty 1s not recorded. It 1s assumed that the alrecraft,
when disturbed from trim, will remain within the linear range of the
pertinent stability derlvatives, that the perturbation angles are small,
end that the structure is rigid. The sign convention which relates the
quantities used hereln 1is shown in figure 1. From this figure the
following basic longitudlnal relationship may be seen to exist:

gn =~V Dy = V(D6 - Da) (1)

The relationship between the normal acceleration at the center of gravity
and the point at which the normal acceleration is recorded may be written
as follows:

2

N, =1, - %? D0 (2)

A similar relationship may be obtained by relating the angle of attack
at the center of gravity to the angle of attack measured at the angle-of-
attack vane
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In cases in which the pitching velocity is known, equations (2)
and (3) in transfer-function form may be solved to obtain the transfer
functions of angle of attack and normal acceleration at the center of
gravity. If the pitching velocity 1s not known, further transformation
of the equations is required. Multiplying equation (3) by VD/g glves

o~

1
-Tgi(na)cg = %(Dcn)V + =k %o ()

and combining equations (1) and (4) to eliminate (Da)e, gives

s + L0, - (3 - )P ?)

The cambination of equations (2) and (5) to eliminate D2 gives

Deg = CE lz)D - V{(zln ~ V)n, + (12 -‘é Dz)a.v} (6)

which is the relationship between the two known quantities of angle of
attack and normal acceleration located at polnts other than the center
of gravity and the unknown quantity of normal acceleration at the center

of gravity.

For the relationship of angle of attack at the center of gravity in
terms of known quantities, equations (2) and (3) may be combined to
eliminate ©

%eg = W - Ev'ﬁ(ncg - 1p) (7)

where oy and n, are determined from flight records and Neg is given
by equation (6).

Rearranging the relationships of equations (6) and (7) glves a new
set of relatlonships between the known and unknown quantities as

%eg =¥ o (zll- 12)D {(Z\lrg)np + (120 + V)"'V} 8)

Dog = Dp - ==—(0cg = o) (9)
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Equations (6) and (7), or (6) and (8), or (8) and (9) may be used in the
determination of angle of attack and normal acceleration at the center of
gravity lnasmuch as these relationships are interchangeable.

Transfer-Function Concept

In the application of this method, equations (6), (7), (8), and (9)
are used 1n transfer-function form. The reader is assumed to be familiar
with the relationshlp between the time and frequency realms and with the
transfer-function concept of expressing the dynamic characteristics of a
system. Reference 1 presents the theory of this concept and references 2
and 5 describe several methods of obtaining transfer functions from flight
data. Equations (6) and (7) written in terms of the transfer functions
relating normal acceleration and angle of attack to elevator deflection
become, respectively,

[g]cg B (11 - 'LZ)D -V (a0 - V)%]P * 12?2[%]‘, (10)

B, - B, -5, - ) .

where brackets denote a performance operator.

It should be pointed out that no assumption need be made as to the
form of the transfer functions. Frequency response at the center of
gravity of the airplane may be obtalned from the frequency response meas-
ured at locations other than the center of gravity by the use of equa-
tions (10) and (11) (or equations (8) and (9) written in operator nota-
tion) when the substitution of Jw for D is made in the equations.
However, this approach wlll not be expanded in this paper.

In order to illustrate the tramsfer-function approach, equations (10)
and (11) are solved by using transfer functions as obtained by stability
theory when the motions of the aircraft are confined to two degrees of
freedom. This assumption is made when only the shorit-period longitudinal
mode is of interesi. If it 1s desired to assume transfer-function forms
of higher order than are assumed herein, the method should still be
applicable.

The equations of motion for two degrees of freedom (constant air-
speed and no structural modes of oscillation) are expressed as follows:
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2 S}; Ky2D28 - CupgD® - Gy & = Cmpy D = Cy (12)
2 %(DG - Da) - Cpp® - Cp o - Cp Da = Cr, 5 (13)

Through use of determinants, each of the two dependent varisbles «
and D6 may be related to the independent varieble & in the following
form:

AD" + BD+ C
®-__D+K (15)
S asPi+mED+C

and by the use of equation (l), the relationship between n and 3 may
be shown to be of the form

2
=MD + ND + P (16)

ADZ + BD + C

o

where A, B, C, G, H, and the other tramsfer-function coefficients
are composed of combinations of the parameters of equations (12) and (13)
and are defined in terms of these parameters in the list of symbols. It
may be shown that the denominator of the longitudinal transfer functions
(the characteristic equation) expresses the damping and frequency of the
free short-period longitudinal motion of the aircraft and is common to
all such transfer functions regardless of the location on the aircraft
at which the variable under consideration is measured or the input and
response that are related.

In the application of this method, it i1s assumed that transfer
functions relating elevator deflection to the response of angle of attack
and normal acceleration at points other than the center of gravity have
been obtained by one 6f the several means available. The transfer func-
tions discussed hereln are symbolized by the following equations:
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[g]vz ED+F )

AD2 + BD + C

& - GD + H
5 2

cg& AD 4+ BD+C

v

5 (17)

n] X"+ YD+ Z
18lp AD" + D + C

-Q] _M? + WD + P
808 AD2+BD+C

[020] _ __gp2 + XD
| B AD® + BD + C
J

Reference to equations (2) and (3) shows that the transfer functions at
the points of measurement and the corresponding transfer functions at the
center of gravity should be of the same form.

Transfer Functions at the Center of Gravity

When the appropriate forms of the transfer functlions are used, equa-
tions (10) and (11) are expressed in terms of the known and unknown trans-
fer coefficients. Equation (10), written in terms of equation (17),

becomes
MD° + ND + P 1 . X% + YD + 2
S = (lD-V) - +
AD" + BD + C| (11 -1,)D-V AD" + ED + C
12| E+F :[
c

g ‘/_AD2+BD+

Equation (18) indicates that, with the approach used herein, a
quadratic numerator and denominator on the left-hand side of the equation
have been set equal to a cublec numerator and denominator on the right-
hand slide of the equation. Obviously, there must exist a linear factor
common to both the numerator and denominator of the right-hand side of
equation (18) which can be canceled to leave an expression with only
quadratic factors.

(18)
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Multiplying both sides of equation (18) vy the factor (ll - 12)D -V
and equating coefficients of equal powers of the operator D yilelds four
relationships

-VP = - VZ (19)
(zl - 12)P - VN = - VY + 172 (20)
1,V
(Zl-IQ)N-VM=-VX+ZlY+—g—F (21)
1,V
_ 2
(1 - )M = 19X + = (22)

A second set of relationships may be obtained by following a similar
process with equation (11). Substitution of the transfer-function forms
of equation (17) into equation (11) gives

D + H ]_ ED + F ]_118Rm2+nn+P)-()m2+m+z)
c C

AD? + BD + C| [AD® + BD + 1| AD? + BD + C

(23)

and equating like coefficlents gives the following three relationships:

0= - %%(P - 7) (24)
- lig

H_F—_L—ZV(N—Y) (25)
_ Lig

G_E-@(M-x) (26)

It is immediately obvious that equations (19) and (24) are equivalent
to a single equation P = Z. Furthermore, examination of equation (22)
shows that the right-hand side of equation (26) may be replaced by the

expression - % M; therefore

G=-%M (27)
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This relationship can also be seen by referring to the expresslons for
G and M in the section entitled "Symbols." Hence, equations (22)

and (26) are parametric representations of equation (27) and may be
replaced by this single equation. For purposese of calculation, the
equations which should be used are equations (19), (20), (21), (25),

and (27). Although these equations form the basic linearly independent
set of equations, equations (22) and (26) would also be satisfied if the

transfer functions [g] and Bg] were known exactly. However, in
P v

the practical application where flight date are used, insccuracies are
inherent in the determination of the measured coefficients. In the
procedure used to determine coefficients relating to motion of the center
of gravity, the inherent inaccuracies should be minimized.

Both equation (22) and equation (26) contain the coefficient E
which is the coefficient of the first power of the operator D in the
angle-of-attack transfer function measured at the vane. Experience has
shown that E and the assoclated coefficient of the transfer function at
the center of gravity G are usually so small that they have little
effect on alrplane response and are therefore usually obtalined with low
percentage accuracy. Hence, although equations (22) and (26) should be
numerically compatible with the other equations (equations (19) to (27)),
this numerical check may be poor because of the inherent inaccuraciles in
the measurement of the coefficient E.

The four relationships, equations (19), (20), (21), and (25), may be
rearranged slightly to express each unknown coefficient as a function of
the known coefficients. These expressions are

1
H=F+—]‘§- (28)

y2
P=2 (29)
N=Y -2y (30)

\s

_ lo lo 22

M=X - < F - e Y - 35(11 - 1,)2 (31)

The five equations, equations (27) to (31), express the coefficients of
the numerators of the angle-of-attack and normal-acceleration transfer
functions related to the center of gravity in terms of measured transfer-
function coefficients, the distance between their point of measurement
and the center of gravity, and the airspeed at which they were measured.
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The inverse Laplace transformation may be applied to the determined trans-
fer functions in order to obtain time-response data at the center of
gravity in response to control inputs that have Laplace transformations.

Pitching-Velocity Transfer Function

The transfer function relating pitching velocity to elevator deflec-
tion may be obtained in a manner similar to that described for obtaining
transfer functions involving normal acceleration and angle of attack.
Starting with any one of the three baslc equations involving pitching
velocity (equations (1), (2), and (3)), the method of equating transfer-
function coefficients of like powers of the operator D 1s applied. In
order to express the coefficients J and K 1n terms of the measured
coefficients only, equations (27) to (31) derived in the preceding section
are then substituted for the derlived coefficlents to give

J=F+&8v+ L1y - 1)z 32

v V2(l 2) (32)
K=£8¢g

- (33)

The equations used to determine the unknown coefficients (equations (28)
to (33)) may be seen to express each unknown coefficient as a function of
the known coefficient of the same power of D, plus a correction term.

Other relationships between the coefficients may be readily obtained by
combining in various ways the equations already presented. The effects

of using other groups of equations on the accuracy of the numerical results
are mentioned in the following sectionm.

EXAMPLE OF APPLICATION

As an i1llustration of the method presented herein, use 1s made of
data obtained from drop tests of a freely falling model for which the
response in angle of attack to a step elevator input was measured 5.51 feet
ahead of the center of gravity (11) and for which the response in normal
acceleration was measured 2.165 feet ahead of the center of gravity (12).
The pitching velocity was not recorded. The actual flight data were
recorded at a constantly decreasing altitude and increasing Mach number.
These conditions were reflected in the time responses as varylng frequency,
varying damping, and a slight trim change. The response data, however,
were adjusted for the condition of constant altitude, constant Mach num-
ber, and zero trim change and were approximated with the followlng
analytical expressions for a true velocity of 835 feet per second:
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a(t) = 0.01745 - e~1-16t(_0,00486 sin 9.932t + 0.0LT45 cos 9.932t), radians
n(t) = 0.238 - e~1:16%(0,356 sin 9.932t + 0.17647 cos 9.932t), g units

5(t)

-0.00902, radians
A plot of these analytical expressions is shown in figure 2.

Making the Laplace transformation (ref. 1) of these equations and
dividing the transformations of the first two equations by the transforma-
tion of the third equation glves transfer functions relating angle of
attack and normal acceleration to elevator deflection at the points of
measurement

[or,] _ _3.109D - 193.40 | radian
5, 2, 2.32D + 99.99 radian

2

[n] _ -6.819D° + 0.7266D - 2637.8 g units
By D2 + 2.32D + 99.99 radian

These transfer functions are in the normalized form in which all the
coefficients have been divided by the inertia coefficient A. The sub-
stitution of D = Jw 1n these transfer functions produces frequency-
response relationships that are plotted in figure 3 as amplitude ratio
and phase angle. The NACA sign convention used in this paper (fig. 1)
defines a positive elevator deflection as one for elevator tralling edge
down, end therefore, a positive elevator deflection will, in general,
produce negative static responses. In order to conform with the usual
practice of plotting frequency-response curves, the phase angles have been
shifted 180° (zero phase angle at zero frequency). The unusual trend in
the phase angles shown in figure 3(a) is caused by the negative coefficlent
of the D? term in the numerator of the transfer function relating normal
acceleration to elevator deflection.

The application of equations (27) to (31) to the coefficients of the

transfer functions obtained ahead of the center of gravity gives the
following coefficlents corrected to the center of gravity:

P/A = - 2637.8

N/A = 7.179

M/A = 6.207

H
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G/A = -0.226

H/A = -19%.00

In order to illustrate the effect on the coefficients M and G
when equations involving E are used, calculations of the coefficients
were made with equations (22) and (26). Equation (22) gave

'M/A = 4L.OT
Equation (26) gave
G/A = -1.6 (M/A = 4k, 07)
G/A =1.9 (M/A = 6.207)

These values of the coefficlents M and G differ considerably from
those found by use of equations (27) and (31) and give illogical values
of amplitude ratio at high frequencies in that & much greater value of
control effectiveness would be required than could be obtained from the
freely falling model. With reference to the stability parameters that
define G/A, a positive sign for this coefficient is likewise illogical.
A check on logical values of the high freguency coefficients M/A and
G/A was made by noting that from stability theory (see transfer-function
coefficients in the section on symbols)

M V2 C G & =V C
A ouge ® A 28 o

By the use of these relationships, values of the parameter CIG (based

on wing area) were found to be in good agreement with theory when equa-
tions not involving E (i.e., equations (27) and (31)) were used for
obtaining values of G/A and M/A.

Additional mmerical solutions for the coefficients of the transfer
functions were obtained by the use of several other sets of equations
which may be derived from combinations of equations (27) to (33). All
of these sets of equations appeared to be less well conditioned for
obtaining accurate results than the equations presented because these
sets of equations frequently expressed the values of unknown coefficients
in terms of known coefficients of other powers of D +to which they are
not directly related physically. In some cases these other combinations
of equations yielded numerical answers for the unknown coefficients that
differed from loglical values by as much as a factor of 1000.
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The coefficlients of the numerator of the pltching-velocity transfer
function may be obtained by using equations (32) and (33) to give

J/A = -193.74

K/A = -95.97

il

The complete transfer functlions can now be gilven by the following
equations:

[%] _ _=0.226D - 19%.00 ~ radien
cg D° + 2.32D + 99.99 radian

W] _ 6.207D° + T.179D - 2637.8 g unit
[5] - 2 ’
cg D° + 2.32D + 99.99 radian

E)_e] _ _-193.74D - 95.97 radian/second
51 D24 2.32D+ 99.99°  radian

The frequency response of the model described by these transfer functions
is shown in figure k4.

It may be noted that the significant changes in the transfer functions
resulting from the transformation to the center of gravity occurred ir the
coefficients of the highest order terms (of the numerators). The negative
sign of the coefficlent G and the positive sign of the coefficient M
obtained in the transformation are in agreement with stabllity theory.

The phase-angle variation of angle of attack related to elevator deflection
is such that in the frequency range shown (fig. 4 (b)), the lag appears to
approach a constant value of 180°. At higher frequencies, however, where
the high frequency coefficient becomes dominant, the phase-angle variation
approaches a constant value of 90° lag. It may also be noted that at the
natural frequency of the freely falling model, the phase-angle variation

of the ratio of pitching velocity to elevator deflection is about zero;
whereas normal-acceleration and angle of attack are lagging elevator deflec-
tion by about 90°.

The foregoing results may be further illustrated in the time realm
by the epplication of the inverse Laplace transformation to the derived
transfer functions. For an elevator step input of the same magnitude as
that used in the test, &(t) = -0.00902 radian, the analytical expres-
sions as functions of time will be
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0.0175 - 0.0176e-1-16%s1n(9.932t - 96.6°), degrees
-1.16%

a(t)

|

n(t) = 0.2380 - 0.30592e sin(9.932t + 84.605°), g units

-1.16t

DO(t) = 0.00866 + 0.1752e s8in(9.932t - 2.83°), radians/second

These time responses together with the time responses from figure 2 are
shown in figure 5.

Inspectlon of figure 5 Indicates that the angle of attack was
affected very little by the transformation; whereas normal acceleration
was changed considerably. The initial positive Jjump in normal accelera-
tion at t = O experienced by the freely falling model at a point
2.165 feet ahead of the center of gravity as compared with the negative
Jump at t = O experienced at the center of gravity 1s due to the
effectlvely instantaneous change in tail loading as & result of the step
deflection. The angular acceleration produced by application of the
tail load resulted in a component of linear acceleration at the point of
meesurement which was larger in magnitude than end opposite in direction
to the actual linear acceleration produced by the tall load, which 1s
indicated by the normel acceleration calculated at the center of gravity.

CONCLUDING REMARKS

A method is presented for analyzing longitudinal response data when
pitching velocity is not known and normsl acceleration and angle of
attack are measured at locations other than the center of gravity. By
means of this method frequency-response data or transfer functions for
angle of attack and normal acceleration are obtalned. From these trans-
fer functlons the entlire time response may be obtalned for these quanti-
ties at the center of gravity. This method also provides a means of
obtaining pitching velocity when normal acceleration and angle of attack
are not recorded at the same location in the airplane. Although the
method as applied used transfer functions obtained fram stability theory
for a system with two degrees of freedom, the analysis was general and
the same principal should be applicable to systems of higher order or of
a greater number of degrees of freedom.

The numerical example presented indicates that care must be used in
selecting a well conditioned set of equations for the coefficlents of the
transfer function 1f accurate results are to be obtained.

This method appears to have particular application to missiles and
models of aircraft where the number of telemetering channels available
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may limit the number of quantities that can be recorded or where, because

of space limitations, Instruments cannot be placed in the most desirable
locations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fleld, Va., July 29, 1953.
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Figure 3.- Frequency response of freely falling model as obtained ahead

gravity related to elevator deflection.
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Figure .- Frequency response of freely falling model at the center
of gravity.
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Figure 4.- Continued.
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Figure 4.- Concluded.
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Figure 5.- Time history of elevator input and response in angle of attack,
pitching velocity, and normal acceleration of the center of gravity
as compared with the response obtained at locations ahead of the center
of gravity of a freely falling model.
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